선형회귀

· 머신러닝
앞선 포스트에서 정리하였던 것과 같이 경사하강 알고리즘은 비용함수를 미분하여 경사를 획득하고 이 경사값을 따라 진행해가며 그 값이 수렴할 때까지 반복하는 것입니다.이를 수식으로 표현하면 아래와 같이 요약됩니다.θj:=θj−α∂∂θjJ(θ0,θ1) \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) θj​:=θj​−α∂θj​∂​J(θ0​,θ1​)선형회귀의 경우에 대해서 구체적으로 이를 적용해 보도록 하겠습니다.이를 위하여 비용함수와 가설함수를 선형회귀의 비용함수와 가설함수로 교체하도록 합니다.우선 선형회귀의 비용함수는 다음과 같습니다.J(θ0,θ1)=12m∑i=1m(y^i−yi)2=12m∑i=1m(hθ(..
쓴웃음
'선형회귀' 태그의 글 목록