경사하강법의 동작에 대해서 살펴보기 위하여 문제를 간단히 해보도록 합니다.하나의 입력 파라메터 θ1\theta_1θ1 만을 고려한 비용함수를 이용하여 비용하강 알고리즘에 대하여 살펴보겠습니다.하나의 입력 파라메터만을 사용할 경우, 아래의 결과 값이 수렴할 때까지 반복하게 됩니다. θ1:=θ1−αddθ1J(θ1) \theta_1:=\theta_1-\alpha \frac{d}{d\theta_1} J(\theta_1) θ1:=θ1−αdθ1dJ(θ1)위 과정은 비용함수(J(θ)J(\theta)J(θ))의 경사값의 부호(+, -)와 관계 없이 비용함수의 최소값 수렴하게 됩니다. 그 과정은 아래의 그림에 표현되어 있습니다.경사값이 양수일 경우, 새로 갱신되는 θ\thetaθ 값은 이전의 θ\thetaθ..
지도학습
경사하강법 (Gradient Descent) 이제 우리는 가정(모델) 함수를 가지고 있으며, 이것이 얼마나 데이터에 들어맞는지 측정할 방법도 있습니다. 이제 우리는 가정 함수의 파라메터를 추정해야 합니다. 경사하강법은 여기에 사용됩니다.우리가 가정 함수를 θ0\theta_0θ0 와 θ1\theta_1θ1 에 기반한 그래프를 그린다고 해보겠습니다 (실제로 우리는 파라메터 추정의 함수로서 비용 함수를 그래프로 나타냅니다.) . 우리는 x 와 y 자체가 아닌, 우리 가정합수의 파라메터의 범위와 특정 파라메터를 선택했을 때의 비용 결과를 그래프로 나타냅니다.θ0\theta_0θ0 를 x 축에 놓고 θ1\theta_1θ1 을 y 축에 놓고, 비용함수를 z 축에 놓았습니다. 그래프 상의 값은 특정 thet..
지도학습 지도학습에서는 입력과 출력 사이에 관계가 있다는 아이디어를 가지고 우리의 올바른 출력이 어떻게 보일 것인가를 이미 알고 있는 데이터 집합이 우리에게 주어집니다. 회귀와 분류 지도학습 문제는 “회기(regression)” 과 “분류(classification)” 문제로 범주화 할 수 있습니다. 회기 문제에서 우리는 결과를 연속적인 출력값으로 예측합니다. 이 말은 우리가 변수들을 연속함수로 맵핑하려고 시도한다는 뜻입니다. 반면 분류 문제에서 우리는 출력을 불연속값으로 예측하려고 합니다. 다른 말로 우리는 입력 변수를 분리된 카테고리에 매핑하려 한다고 할 수 있습니다.예시 1:부동산 시장에서 집의 크기에 관한 데이터가 주어졌을 때, 그것들의 가격을 예측하는 것. 가격은 크기의 함수로 연속적인 출력값을..